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Abstract. Based on the q-deformed BRST algebra of Bernard and Watamura, we study the 
q-deformed Killing form and the second q-deformed Chem class for the quantum group SU,(Z) 
from the q-gauge covariant condition. We find that although the components of the identity 
and the adjoint representations are mixed in the covariant commutative relations of the Q- 

deformed BRST algebra, the q-deformed Chem class can be defined uniquely up to a common 
factor such that it contains only adjoint components. We wmpute the q-deformed Chem- 
Simons by introducing a q-deformed homoropy operator, that is the quantum analogue of the 
homotopy operator presented by Chem and Zumino. Finally. we calculate the qdeformed 
cocycle hierarchy. 

1. Introduction 

Recently, quantum groups have attracted increasing attention. Manin [ l ]  suggested a general 
construction for quantum groups as linear transformations on the quantum superplane. 
Following the general ideas in Connes [2] on the non-commutative geomehy, Woronowicz 
[3] elaborated the framework of the non-commutative differential calculus. He introduced 
the bimodule over the quantum group and presented various theorems concerning the 
differential forms and exterior derivative. The differential calculus on the quantum 
hyperplane was developed by Wess and Zumino [4]. There have been many papers treating 
the differential calculus on quantum groups and the q-deformed gauge theories from various 
viewpoints 15-151. 

Brzezihski and Majid [ I  I] took some steps towards developing a gauge theory in which 
the quantum groups appear as the fibre of a quantum principal bundle and play the role 
of the structure group in the group of gauge transformations. Some physicists have tried 
to study the q-deformation of gauge theory from the interaction between matter fields and 
gauge fields, where the gauge fields aie valued in the quantum groups but spacetime is an 
ordinary manifold. Some proposals [9] studied the covariance of the q-deformed Yang- 
Mills theory in the finite gauge transformation without considering the matter fields. These 
proposals were criticized [16] owing to the non-hvariance of the so-called q-trace under 
repeated gauge transformations. 

Since the quantum group is formulated in the language of the Hopf algebra, the gauge 
transformation will be represented in an abstract language and the term for the transformation 
parameter becomes obscure. Bernard 151 first raised the idea of q-deformed BRS symmetry 
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1161 as an alternative formulation of the gauge theory. Watamura [I51 explicitly constructed 
a q-deformed BRST algebra, which is the algebra of the gauge fields, the ghost fields and 
appropriate matter fields on one spacetime point. Now, the gauge transformation of the 
theory is replaced by the BRST transformation which is represented by a nilpotent ‘differential 
operator’ 6, and the gauge parameter is replaced by the ghost fields and becomes an object 
of equal importance with the matter and gauge fields. Watamura 1151 extracted appropriate 
properties from the non-deformed BRST formalism and imposed them as the condition 
which the new algebra should satisfy so that the q-deformed BRST formalism is the q- 
analogue of the non-deformed one. Watamura proved in detail that the definitions of the 
covariant commutation relations among the fields and their derivatives are consistent with 
the operation 6, the spacetime derivative d,  as well as the *-operation, the antimultiplicative 
inner involution. Since there are two nilpotent operators 6 and d, the double cohomology 
and cocycle hierarchy can be discussed in this formalism. The q-deformed BRST algebra 
of Watamura is a good starting point for developing the deformation of Chem classes and 
cocycle hierarchy. 

The q-deformed Killing form is the key to constructing the q-deformed Chern class and 
the q-deformed cocycle hierarchy. The q-deformed Killing form and the second q-deformed 
Chem class, that contain both components of the identity and adjoint representations, for 
the quantum group SUq(2) can be defined in the q-deformed BRST formalism from the 
q-gauge covariant condition. Although the components of the two representations have 
to be mixed in the commutative relations of the q-deformed BRST algebra, we prove that 
it is possible to define the q-deformed Killing form and the second q-deformed Chern 
class uniquely up to a common factor such that they only contain the components of the 
adjoint representation. Then, generalizing Zumino’s method [18,19], we introduce a q- 
deformed homotopy operator to compute the q-deformed ChernSimons, that also only 
contains adjoint components. Finally, by making use of the standard method for a non- 
deformed case, we calculate the qdeformed cocycle hierarchy. The formalism discussed 
in this article can be generalized to the quantum groups SU,(N).  

Aschieri and Castellani [I31 gave a pedagogical introduction to the differential calculus 
on quantum groups by stressing, at all stages, its connection with the classical case (q + 1). 
In an article on deformed gauge theories, Castellani [I41 tried to construct the q-deformed 
Lagrangian and the q-deformed Killing form. He found the q-deformed Killing form 
for Uq(2)  with a parameter, that may describe the mixture of the components of two 
representations. However, he did not find the general forms for the quantum groups SUq(N) .  

The plan of this article is as follows. In section 2 we sketch some formulae for a 
non-commutative differential calculus on SUq(2) [2-6,8,13] and the q-deformed ERST 
formalism [ 151 in order to explain our notation. The q-deformed Killing form gl, is 
defined in section 3 by requiring the invariance of the second q-deformed Chern class. g1, 

can be defined uniquely up to a common factor from the requirement that it only contains 
the adjoint components. In section 4 we introduce a q-deformed homotopy operator, that is 
the analogue of the homotopy operator presented by Chem and Zumino [18,19], to compute 
the q-deformed Chem-Simons, from which we calculate the q-deformed cocycle hierarchy 
in section 5. We directly prove the cocycle hierarchy formulae by the recursive relations 
given in the appendix. Finally, some conclusions and discussions are given in section 6. 

2. Non-commutative differential geometry and BRST formalism 

A quantum group is introduced as the non-commutative Hopf algebra A = Fun,(G) 
obtained by continuous deformations of the Hopf algebra of the function of a Lie group. The 
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associated algebra A is freely generated by non-commutating matrix entries T$ satisfying 
the relation 

where k9 is the well known solution of the simple Yang-Baxter equation 1201, related to 
the fundamental representation of UqSU(2) [21]: 

(2.2) 
where P denotes the projection operator. Hereafter, unless specified otherwise, summation 
of the repeated indices is understood. 

kq = qPS - q-'PA ki '  = q-'PS - qP.4 

The direct product representation of the fundamental representation and its conjugate 

M u b ,  = T " ~ , K  ( T t 2 )  (2.3) 
contains both components of the identity and the adjoint representations, that can be 
separated by q-Pauli matrices [ 151: 

(2.6) 

Throughout this paper, a capital italic letter, such as I ,  runs over 0, +, 3 and -, a small 
italic letter, such as i, runs over +, 3 and -, but the first few small italic letters, such as a ,  
runs over 1 and 2. Now, two kinds of component can be separated in M :  

I mMmh 

M i  0 -  -1@~=0 p0=1. (2.7) 
M'J = (0 )n, olb,(u,)b& 

A diagonal matrix D related to the double antipode action can be defined as 
K'(M',) = D'KM%(D-')L 

(2.8) 
I 

Doo=D33= 1 D+ - 2 D-- = q - Z .  

(L+)ab (T5) = q-"2(kq)"C,, 

t - 4  
The linear functionals [22], (L*)ob, defined by their.values on the entries T$, belong 

to the dual Hopf algebra A': 

(L-yb (T2) = Q(Ei')acdb 

Cf (L*yd  (L*yC = (L*)*, (qrld (2.9) 

(L+Yd ( L - y C  = (L-)*, (%)", . ef 
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The q-deformed exterior derivative 6 is defined as a map from A to bimodule r: 

(2.10) 

where a, ,9 E A. When the operator S acts on the fields, Watamura I151 called it the BRST 
transformation operator and the fields in r have the ghost number 1. 

A left action AL and a right action AR of the quantum group on r are defined as 
follows: 

AL : r --f A O I- A L ( ~ @ )  = A(a)(id @ S)A(B) 
(2.11) 

AR : r -+ r €4 A A ~ ( a 6 p )  = A(a)(S @ id)A(B). 

The bases 181 of the right-invariant elements o f  r are denofed by q', satisfying: 

(2.12) 

(2.13) 

The basis of the left-invariant element of r is easy to calculate from q': 

W' = K ( M ' ~ ) ~ ~  AL(w') = 1 OW' AR(w') = wK o K ( M ' ~ ) .  (2.14) 

As the analogue of the ordinary permutation operator, a bimodule automorphism A in 
r O r is defined by 

A(w' O q K )  = qK @ W' 
(2.15) 

A ( U T )  = U A ( T )  A ( T U )  = A(QU U E A T E r o r. 
Thus, we have 

A(V' o 7') = hl',,qK @ nL nlJKL = L ; ( M ~ , ) .  (2.16) 

The non-vanishing components of A f J K L  can be listed as follows 
AiikL = (A-')" - S i $  + 21 cl ADOW = (A - I W  ) - 1  - 

k l -  k l  

11'0, - (A-1)o' Jk = A 4; ik - 
Aoi 10 . = 

A j k  ai - - ( A - )  1 j k  i o -  - I  f J k  , 
Aiooj = (A-')'' j o  = (A2 + I )  8; 

(2.17) 

= 6; 
where the non-vanishing components of fik = -? are 1151 

(2.18) 3 - _  3 f-+ - f+- = 1 f:3 =A. + - fZ _ _  - I  
$3 = A  = 4  f,, - 3 - 4 

Watamura [15] introduced an operator for given tensors Xnb, and U$,: 

Then, A f J K L  can be expressed as a combination of four projection operators [15]: 
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I J  (h")"~,  = ( 8-1 9 fi ) K L  = (PS, 'PS)"KL - q2(PS, ~ A ) " K L  - q-'(PA? PS)"KL 

+(PA,  P A ) " K L .  (2.20) 

AIJ, ,AM;~ALN P Q -  - A J K  LM A I L  P N  AN" Q R '  (2.21) 

( A t 4 2 ) ( A f q - 2 ) ( A - 1 ) = 0 .  (2.22) 

ArJKL satisfy the Yang-Baxter equation [3]: 

The eigenvdues of the A matrix are 1, -q2 and -q-': 

The exterior product of the elements in r is given as follows 

P A P '  = p OP' - A (P OP') 

tl I ~ t l  J - - (  81s' K L 

(2.23) 

K L ) ( q K @ t l L ) .  

q' A 7' is annihilated by the projection operator Pss owing to (2.22) and (2.23): 

pss = (Ps, ? ~ ) " K L  + (PA,  PA)"^‘ = [21-' { A  A-' -I- (A2 f 2)1} 
(2.24) 

(Pss)"KL ( t lK  A a L )  = 0. 

The projection operator Psn now can be expressed as follows 

PSA = ('Ps, PA)"KL + (PA, Ps)"KL = (2  - A - A-' 1. (2.25) 

It is interesting to note that there is a projection operator ?Ad, with only the adjoint 
components: 

(2.26) 

(2.29) 

(2.30) 

and x ,  E A' are the q-analogues of the tangent vectors at the identity element of the group 
and ( * X I )  are the analogues of the right invariant vector fields [13]: 

x ,  = ig - ( E  8; - L ; ) .  (2.31) 
h 

The q-deformed structure constants C,: ate 

(2.32) 
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where the Gk were given in (2.18). The so-called q-deformed Cartan-Maurer equation 
comes from (2.17), (2.29) and (2.32): 

69' = 9' 8 (9' * XJ) 

= C&hJ 8 9 K  
= (Az + 2)-' cjkr (q' A a') . (2.33) 

From the condition S'LY = 0, the functionals XI span the 'q-deformed Lie algebra' 15,131: 
(2.34) K L  XIXJ - A I JXKXL=CI~(  XK.  

Cl:CJt - AK$JCKR'CL,R = CI;CR[. 

Thus, the qdeformed structure constants satisfy the q-deformed Jacobi identities 15,131: 
(2.35) 

For the adjoint components we obtain from (2.17) 

(2.36) 

Now, we sketch the q-deformed BRST algebra B constructed by Watamura [ 151. It is 
the algebra of the gauge fields, the ghost fields, matter fields and their derivatives on one 
spacetime point. The ghost fields have the same properties as the bases 1' in r, but are 
functions of the spacetime. We will still use the symbols 9' to denote the ghost fields if 
it does not cause confusion. The ghost fields in the BRST algebra have the ghost number 
1 ,  but the degree of form 0. The gauge potentials A' have the degree of form 1, but 
the ghost number 0. The matter fields have zero ghost number and zero degree of form. 
There are two operators in a: the spacetime exterior derivative operator d and the BRST 
transformation operator 6, that is the q-deformed exterior derivative operator, but acting on 
fields. The operator 6 increases the gbost number by one and the operator d increases the 
degree of form by one. Watamura studied the covariant commutation relations among the 
matter fields, ghost fields, gauge potentials and their derivatives consistently with these two 
operators as well as the *-operation, the antimultiplicative inner involution. 

First, in order to describe these covariant commutation relations by unified formulae, 
we forget the matter field in what follows and only discuss four kinds of fields in the BRST 
algebra B: q', dq', A' and dA'. We introduce an index n that is equal to the difference 
between the degree of form and the ghost number. The indices n for 1'. dn', A' and dA' 
are -1, 0, 1 and 2, respectively. Both 6 and d operations satisfy the Leibniz rule in the 
graded sense for the index n and are nilpotent operators: 

S2=0 d Z = O  d 6 t 6d = 0 
d(XY)  = (dX)Y + (-l)"'X(dY) (2.37) 
6 ( X Y )  = (6X)Y + ( -1)"'X(6Y) 

where nx is the index of X .  Both d and S are covariant for the left and right actions. For 
any element p E B they satisfy 

(2.38) 

Second, A' are assumed [I51 to have following properties, similar to 7'. Hereafter we 

.hi(&) = (id 8 ~ ) A L ( P )  
A R ( ~ P )  = (6 @ id)&(P) 

neglect the wedge sign A for simplicity. 

M d p )  = (id @ ~ ) A L ( P )  
AR(dP) = (d 8 id)A.a(P). 

( T ~ ~ ) ~ ~ ~ ~  ( A ~ A ' )  = o 

A ik 

(P&jj)",, (A"') = A'A' 
(2.39) - ig (AOA' + A ' A O )  = (3 + z)-'c ' A ~ A ' .  
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From the consistent conditions, dq’ and dA’ have to satisfy the other conditions 

(?sA)‘’KL ( d q K d q L )  = 0 ( d A K d A L )  = 0. (2.40) 
“hiid, the gauge potential is introduced in the covariant derivative. The covariant 

condition of the covariant derivative in the BRST transformation requires 

(2.41) 

Fourth, discuss two different fields X’ and Y K  with indices n, and ny. respectively. 

(-1)O’”rX’y’ = ArJKLYKXL. (2.42) 

6A‘ = dq’ + y ig ( q  0 A I + A’qO). 

For definiteness assume n, 3. ny. The consistent condition requires 

From (2.17) we have 
(-1)”’”’XOY’ = y’x0 

(2.43) {ig/A} (Y’X’ - (-1)~,’7 X‘Y’) = C,,Y I J K  x . 
At last, the gauge fields F’ satisfy 

F J  = dA’ + igh-’ (AoAJ + A’A’) 

(2.44) Fo = dAo 
I I -  K F L A I J  F t l  - V  KL 

F‘=dA‘ + ( h 2 + 2 ) -  IC j r  iA j  A k 

6F’ = igh-’ (qo F’ - F1qo) = CJ;q’FK 
(2.45) 

~ F O  = o SF’ = -ighqo F‘ + c,,‘+F~ 
dF’ = -igh-’ (AOF’ - F‘A’) 

= -&A-’ (AOdA‘ - dA’ A’) 

= -C,;A’ d A K  

dFO = 0 d F i  = ighAOdA’ - Cj,‘AjdAk. 

(2.46) 

Please refer to the original paper [IS] for the consistency of the q-deformed BRST algebra. 

3. q-deformed Chern class 

It is easy to understand that the second q-deformed Chem class has the following form 
[5,14]: 

P E F’F’gIj (3.1) 
where we omit the possible constant factor in P. The q-deformed Killing form g1J is 
chosen from the condition 

6 P = O  d P = 0 .  (3.2) 
In addition to (3.2) the difference in the q-deformed Chern class for the infinitesimal 
transformation of  the gauge potential should be a total derivative. It will be proved in 
section 4 (see (4.2)) that the last condition is satisfied. 

From (2.44) and (2.45) we have 

6P = ( 6 F R  FS  + FR8FS}gRs  
= igh-l (V°FRFS - FRFSq0)gRs 

igA-lq‘F’F“ 6’ ASO A R T  ( f g J K -  T K  I J g R S ]  
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namely, g,, has to satisfy 

(3.3) 
It can be checked that (3.3) is equivalent to the similar conditions proposed by Bernard 

((3.19) in [SI) and by Castellani ((30) in the second paper of [14]). We are going to show 
that the condition d P  = 0 also holds if 81, satisfies (3.3). From (2.39) a product of four 
adjoint components of AJ must be vanishing, so that: 

P = dARdASgRs + igh-' (dAR(AoAS + ASAo) + (AoAR + ARAo) dAS}  ~ R S  

d P  = igA-' (dAR(dAoAS - AodAS + dASAo - ASdAo 

= - igh-' (AodARdAS - dARdASAo) gRs 

6 j 8 I K  0 = ASoTKAR:jgRS. 

+ (dAoAR - AodAR +dARAo - ARdAo)dAS) ~ R S  

= - igh - I  A I dA'dAK ( S ~ ~ I K  - ASOrKhR:,gRs}. 

From (2.17) we can solve (3.3) as follows. 
(i) When J = 0, I = i # 0 and K = k # 0, we have 

got = 0. 
(ii) When K = 0, I = i # 0 and J = j f 0, we have: 

gro = 0. 
(iii) When I = 4~ and J = K = 3, we have: 

&?+3 + 83& = 0. 
However, when J = f and I = K = 3, we have 

?qT38+3 -!- h83& = 0. 
Thus, we obtain 

8+3 = 83& = 0. 
(iv) When I = J = f and K = 3, we have 

g,, = g-- = 0. 
(v) When I = -J = f and K = 3, we have 

(3.44 

(3.4b) 

(3.44 

(3.44 

8t- = 4833 g-t = q - l g 3 3 .  (3.44 
For the rest of the cases there is no new restriction on g / J .  It is worth noticing that the singlet 
and adjoint components of 81, are separated from each orher, although these components 
are mixed in the commutative relations in B. Furthermore, if one requires the q-deformed 
Chem class to contain only the adjoint components of gauge fields, the q-deformed Killing 
form as well as the q-deformed Chern class are determined uniquely up to a common factor. 

We are going to choose the q-deformed Killing form 81, such that 81, satisfies (3.4) 
and is the analogue of the classical Killing form. The following q-deformed Killing form 
satisfies these conditions: 

g j j  = DRsCl,SC,L = D',Cl,SCl~ (3.5) 
where the summed indices cannot equal to zero owing to (2.32). It is acceptable that 
the q-deformed Killing form is related to the double antipode action. From (2.32) the 
non-vanishing components of g j J  are: 

(3.6) gm = -g2h2 131 q-'g+- = qg-+ = g33 = -g2(h2 + 2). 
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Obviously, both g,, and gjj (without 0 subscript) satisfy (3.4). From the q-deformed Killing 
form we may define two kinds of second q-deformed Chern class: 

P z (F .  F )  = F‘F’gjj 
= -gZ(h2 + 2) (F3F3  + qF+F-  + q-’ F-F’) (3.7) 
z F I J  F g,, - P = -g2h2[3]FoFo 

where P and k contain only the adjoint components and the singlet of F j ,  respectively. 
From now on we will mainly discuss q-deformed Chem class P. A similar calculation for 

is much simpler than that for P. From a similar condition, Castellani [14] found another 
q-deformed Killing form with an additional parameter r ,  that may describe the mixture of 
two kinds of component. 

4. q-deformed ChernSimons 

In the classical case Zumino [18,19] introduced a homotopy operator k to compute the 
ChemSimons. Now we generalize his method to compute the q-deformed ChemSimons. 

Introduce a q-deformed homotopy operator k that is nilpotent and satisfies the Leibniz 
rule in the graded sense for the index n: 

k 2 = 0  d k + k d = I .  (4.1) 

If k exists, we can compute the q-deformed ChemSimons &(A) from the q-deformed 
Chern class 

P = ( d k + k d ) P = d ( k P ) = d Q ( A )  
Q ( A )  = kP 

where we have used (3.2). 

potentials A: change from 0 to A’: 

(4.2) 

Introduce a real parameter t ,  0 < t < 1. When r changes from 0 to 1, the gauge 

A: = tA’  

F: = tdA’ + igt2 
(A’A’ +A”’) 

ig(t2 - t )  
= t F ’ +  * ( A  A’ + A ’ A O )  

(4.3) 

Owing to ow definition (2.6) of the q-number we have to nge the usual definition 1241 
slightly for the q-deformed derivative and the q-deformed integral. Define the q-deformed 
derivative along f by 

satisfying the q-deformed Leibniz rule: 

The q-deformed integral i s  defined by 

(4.5) 
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At least for a polynomial, the q-deformed integral is the inverse of the q-deformed 
derivative. For example, 

Now, define the q-deformed Lie derivative i9 along t in the gauge space: 

(4.7) 

and the q-deformed operator e, that satisfies the q-deformed Leibniz rule in the graded 
sense for the index n: 

e,A: = 0 e,F: =$A:  = d,tA' 
(4.8) e, (f(t)g(t)) = l e , f ( t ) i m )  + (-lYf(q-% i e , m  

where f has index n. 

we have 
It is easy to check that for all formal polynomials (vanishing at F: = 0 and A/ = 0) 

e,!, = 0 
a 

t , d  + d e, = Jq = dqt- 
ad (4.9) 

= dJ9 %e, =e,$. 
Comparing this with (4.1) we obtain 

I 
k = e, .  (4.10) 

Now, we are able to compute the q-deformed ChernSimons by (4.2): 

t2(*2 + 2, ( A ,  A ,  A ) }  
A 2 t  1 

where we have used the definition (A.l) and relation (AS). 

Q ( A )  = k  pi 
= ( A . d A )  + I[41/[6Il(A, A ,  A )  
= ( A ,  F )  - ( W / R l ( A ,  A ,  A ) .  

= d Q ( A ) :  Similarly, we can compute Q(A)  from 

a ( A )  = k p ,  = -gZh2[3]AodAo. 

It is easy to prove by direct calculation that 

d Q ( A )  = P d Q ( A )  = b. 

(4.12) 

(4.13) 

(4.14) 
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In fact, the second equation is obvious and the first one can be proved in terms of the 
formulae given in the appendix: 

d Q W  = (dA,  dA)  + {[41/[611 { (dA,  A,  A )  - ( A , d A ,  A )  + ( A ,  A ,dA) l  
= (dA,dA)+(hZ+l)-’((dA,A,A)+(A,A,dA)l 

= (dA,dA)  + 
= ( F ,  F )  = P. 

( ( d A ,  (A’A + AA’)) + ((A’A + AAo) ,dA)]  

We find that the components of the identity and the adjoint representations are separated 
in the q-deformed Chem class and in the q-deformed ChemSimons, although they are 
mixed in the commutative relations of BRST algebra. 

5. q-deformed cocyde hierarchy 

The gauge fields F’, just like those in the classical case [%I, are invariant under the 
transformation 

A’+A’-q’ d - + d + S .  (5.1) 

In fact, 
ig F’ + F’ = (d  + S)(A’ - q’) + y ( (Ao - qo)(A’ - q’) + (A’ - q’)(A’ - q’)} 

F’ + 6A’ -dq’ - - ( q  ig 0 A I +A”’) - 6q3 - - (q’q’ + q’q’ - Aoq’ - q’A’)] ig I [  A A 
= F’. 

I 
Now, transforming (4.14) and expanding it by the ghost number, we obtain 

Q(A - V )  = ( A  - 7. F )  - I[21/[611(A - II. A - q ,  A - 7) 
= o; + o; + o: +U; 

= do: + (So: + do:} + (So: +do;]  + (So: + do:] + So; 
P = ( d + S )  Q ( A - q )  

(5.2) 
where the subscripts denote the degrees of form of the quantities and the superscripts denote 
the ghost numbers. In the two sides of (5.2) the quantities with the same degree of form 
and the same ghost number should be equal to each other, respectively: 

P = d o :  6o;+do;=O 6 o l + d w : = O  

Swf +do; = 0 ’ So: = 0. (5.3) 

We are going to derive the explicit forms of these o and simplify them by the formulae 
given in the appendix. 

O$ = Q ( A )  = ( A ,  F )  - I [21/Rt (A9 A. A )  = ( A ,  d A )  + ([41/1611(4, A ,  A )  (5.4) 

= - ( v ,  d A )  - (ig/Wv, @‘A + AAo)) + ([21/[6Il{(rl, A ,  A )  + (A.  rl. A )  + ( A ,  A ,  rl)l 
= - (q.dA) (5.5) 
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ai = IW/[61)(v3  11, v). (5.7) 
Similarly, we also have: 

d ( A  - 0) = -g2h2[3] (Ao - 11') F o  = &: +hi 
;o- 3 - Q ( A )  - = -g2A2[3]AoFo 
(jl- (5.8) 

2 - g2A2[3lqOF' 

F = d$ S@ + dc$ = 0 8;; = 0. 
Equation (5.8) is obvious. We are going to prove (5.3) again directly by the formulae 

in the appendix. 

S o $ + d a ~ = ( S A , d A ) + ( A , d ( S A ) )  

+([41/[61)I@A.A.A) - (Ap6A.A)+(A ,A ,SA)1  
- (do ,  d A )  

+(f41/[6ll((dv, A ,  A )  - ( A , d v ,  A )  + ( A ,  A,dvl l  

= ( i g j h ]  [ ((V'A + Av').dA) + ( A ,  (d#A - vodA + dAqo - Adq'))} 

+w { ( ( ~ o A  + AVO),  A ,  A )  - ( A ,  ( ~ O A  + A V O ) .  A )  

+ ( A ,  A ,  (v'A + AV'))} 
At61 

= (ig/h) [ v'(A, dA)  + (Adv', A )  + ( A ,  d A )  11'1 
igP1 

+I[41[31/[611(d~, A ,  A )  + x [vo(A. A ,  A )  + ( A ,  A ,  Ah ' )  

= O  

Sa: + dw: = -(Sq, d A )  - {ig/h](q, (d$A - q'dA + dAqo - Adv')) 

- (Az + I)-' ( (d% A.  11) - (%dA,  11) + (v ,  A , d ~ ) l  
= - (A' + I)-'(v, v, d A )  - lig/h)(qdqo, A )  + igh $(q ,  dA)  

A2 + 2 
-h2(h2 + l)-'(Vq 11, d A )  + - AZ + I (11, rl. d A )  

h2+2 
+(ig/+l(h2 + l)(vdrl', A )  - G (11, d v ,  A )  

4 h 2 t  I)-' [ - (v ,dv ,  A )  t igW2 t l )vo(v ,dA)  

+ (% 11. d.4) +,igh(hz + l ) (vdvo,  A )  - (A2 + l ) (q ,dv ,  A ) }  
= o  

60: + d u i  = -(Az t I)-'  ((811, A ,  11) - (11, 6A, 11) + (11, A ,  SV)I 
+([21/[611 I(dqs 17, vl - ( v ,dv2  11) + (11, v1 &)I 

= - ( A 2 + 1 ) - ' ( Q Z +  I ) - ' ( q , 1 1 , A , v ) - ( ~ , d 1 1 , v )  

- k / ~ l ( %  (voA + Avo) ,  11) + (Az + l)-'(q, A ,  v, d }  
-([21[31/[611(?. d ~ ,  11) 

= 0. 

A product of four adjoint components of v j  must be vanishing, so we have 

60; = {[21/[611 I ( h ,  11-17) - ( v , S V ,  7) + (11, 11,Sv)I 
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6. Conclusions and discussions 

Based on the q-deformed BRST algebra, we have studied the q-deformed Killing form 
and the second q-deformed Chern class for the quantum group SUq(2) from the q-gauge 
covariant condition. We find that, although the components of the identity and the adjoint 
representations have to be mixed in the commutative relations of the q-deformed BRST 
algebra, the q-deformed Killing form and the second Chem class can contain only one 
kind of component-a singlet or adjoint component. We compute the second q-deformed 
Chem class that contains only the adjoint components in detail. Introducing a q-deformed 
homotopy operator, that is the quantum analogue of the homotopy operator presented 
by Chem and Zumino [18,19], we are able to compute the q-deformed ChemSimons. 
Then, the q-deformed cocycle hierarchy can be calculated by the invariance of P in the 
transformation (5.1). These method can be generalized to compute the higher q-deformed 
Chem classes and ChernSimons and to the quantum groups SU,(N).  

Besides these generalizations, there are some interesting problems left to be studied. 
Although the framework of quantum bundles has been given [ll], the relations between the 
q-deformed gauge transformation parameter and the q-deformed ERST transformation need 
to be further studied Here we have concentrated on the algebraic and homotopy formalism. 
We are able to discuss the double cohomology and cocycle hierarchy in terms of two 
operators d and S. However, we have not paid enough attention to the deep geometrical 
meaning of the q-deformed Chem characters. An important problem is how to integrate 
the q-deformed Chern class to obtain the q-deformed characteristic number. We have 
not studied the physical application of the q-deformed Chem characters, for example how 
to establish the q-deformed Yang-Mills theory, the quantization of the q-deformed field 
theory and the meaning of the q-deformed Faddeev-Popov ghost and q-anomaly, etc. We 
will consider these problems in future work. 
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Appendix A. Some recursive relations 

Generalizing (3.1) we define 

where 

. .  
( X , , X * , . . . , X , )  =x:' x f . . . x ~ g j , j p . . j m  (A.1) 

g j , h . . j n  D ~ C j , ~ C l z ~ , 2 . . . C .  b l 0  l m .  (A.2) 
X ,  are fields rf, dq', A' or dAJ in the ERST algebra B. They can also be replaced by, for 
example, X Y O ,  Y o X  or F .  The following relations are easy to prove by direct calculation: 

AR$j g R S  = g1.I Arsij gr, = gi j  

f;" gm = 0 (PAdj)"ij  gr,r = 0 (A.3) 
N 

(?Adj)"tj grsk = gijk (?Adj) j k  girs g i p .  
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Now, we are going to derive four important recursive relations. Assume X' and Y' 
are two different fields in B with the indices n, > ny. Z' denotes a field in L?, or a field 
multiplied by the zero component of this or another field. Since the following relations are 
linear for the field Z', Z' can also be replaced by their linear combination, for example, 
F'. 

From (2.42) and (2.17) we have 

(-I)"x%x'y" = y'XKA'" J K  
= (A'+ 1)Y"x' - (ig)-'AYjXK C .  i k  ' ' 

As a result of (2.36). 

Now, according to the definitions (A. l )  and (A.3), we have 

So we have 

(-1)"="~(~",zI,x, Y,ZZ,".) = (.. . ,Zl, Y,X,Z2,.. .) 
-1 2 -igA (A  + 1) ( .  .. , 21, (Y'X - (-l)nznyXYo), Zz, . . .). 

By making use of (A.4) we have 

( -~)" 'S(Z ,  X ,  Y )  = igW2 + I ) ( z ,  Y'X) - (h2 + 1 )  (z ,  Y ,  X )  
( - l ) n z " l ( X ,  Y ,  2) = igA(A2 + l ) (Y"X,  Z )  - ( A z +  l ) (Y ,  X .  2). (A.7) 
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From these four recursive relations and (A.3). we can derive the following useful 
formulae. First of all, from (A.3) we have 

(q ,  q )  = ( A ,  A )  = 0 (-1)"'"?(X, Y )  = (Y, X ) .  (A.8) 
From (A.5) we have 

( F ,  A )  = ( A ,  F )  = ( A ,  dA)  + % ( A ,  (A'A + AA')) 
A (A.% 

= (A ,dA)+(A'+ l ) - ' ( A , A , A ) .  

I f  the fields Y' and Z' are not the field q', we have 

(Y, z,# = (-lp+?&Y, 2). (A.lO) 

Let Z' be a field in i3 with the index n, and let X' denote the field q' or A' with the 
index n, = -1 or 1 ,  respectively. From the recursive relations we obtain that, if nz < nx,  

( X ,  x,  Z )  = ( Z ,  x, X )  

( X ,  x. Z) - ( - l Y ( X ,  z ,  X )  + ( Z ,  x. X )  = [ 3 ] ( Z , X , X ) .  
(-l)"'"'(X, Z ,  X )  = - (Az+  1) (Z ,  X ,  X )  (A . l l )  

If n, > n,, we have 

( Z ,  X ,  X )  = igA(A2 + l)(Az + 2)X0(X, Z )  + (Az + 1 ) ( X ,  X ,  Z )  

(-l)"'*L(X, Z ,  X )  = -igA(A2 + l )Xo(X ,  Z )  - ( X ,  X ,  2) 
(A.12) 

- (A2 + 2)-' { ( X ,  X ,  2) + ( Z ,  X ,  X ) ]  
( X , X , Z ) - ( - l ) " ' " ' ( X , Z , X ) +  ( Z , X , X )  =-(-1)"'"'[3](X,Z,X). 

At last, through direct calculation we have 

( A ,  A ,  A )  q' = - q' ( A ,  A ,  A )  = ig3(A2+ 1)(A2 + 2)  qoA3A+A-. (A.13) 
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